Biomass and bioenergy from algae, CO2 and wastewater

Francesco Gentili Department of Wildlife, Fish And Environmental **Studies** SLU, 90183 Umeå In collaboration with Umeå Energi AB, Umeva AB, **RagnSells AB and Uminova Innovation AB** The main financer is The Swedish Energy Agency **Processum Biorefinery Initiative AB** Kempestiftelserna

Nitrogen is the most limiting nutrient in agriculture and forestry

Phosphorus is a limiting nutrient and we are approaching the P peak

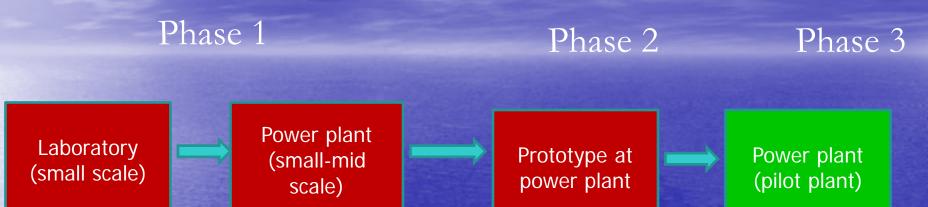
Algae

Biomass (biodiesel, biogas, bioethanol, fish feed, manure)

Why to grow algae

- Grow faster than land plants
- Can grow on wastewater
- Can use flue gases (CO₂, NOx)
- Can grow on marginal land (non-arable lands)
- Produce high level of lipids (60% and more)
- Produce protein for animal consumption
- Production of astaxanthin and other pigments of high economical value
- Can be use to treat wastewater recycling nutrients
- Can be use for CO₂ sequestration
- Can be used for production of biofuels (biodiesel, bioethanol and biogas)

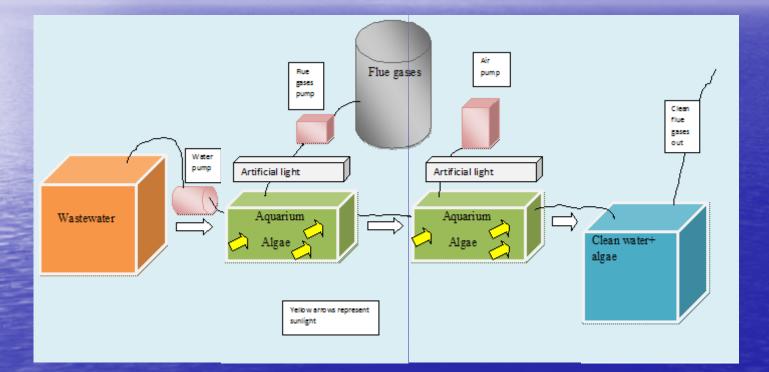
Summary


Reduction of gaseous emissions (CO₂) Reduction of N and P in wastewater Growing algae using as substrate wastewater, CO₂ emitted from industries (ex. power plant, wastewater plant) Large production of economically interesting products such as biodiesel, biogas, bioethanol, fish feed, manure etc.

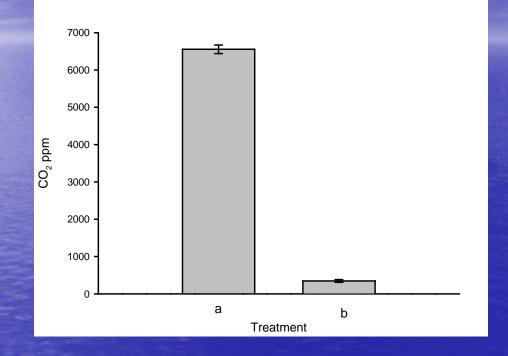
Umeå project

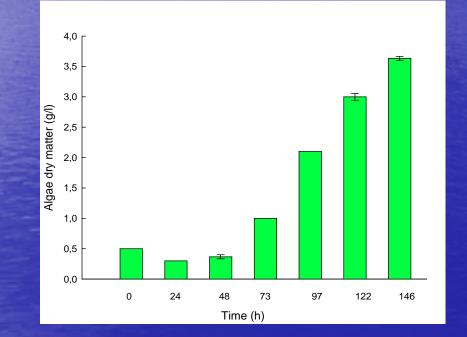
The Umeå project has three strong points:

- tight collaboration among SLU, Umeå Energi AB and Umeå Vatten och Avfall AB (Umeva), RagnSells and help from Uminova Innovation for network establishment.
- Approach to the problem going directly to the problem core
- Experimental work carried out both in lab as well as at the power plant using real raw materials.


Project plan

Growing system...


Larger scale at Umeå energi power plant

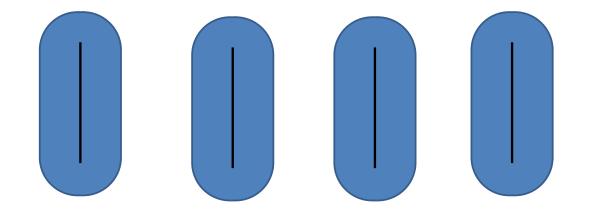


Some result

 CO_2 from organic waste fixed in the two treatments: a) control without algae and b) with algae. The values are mean±SE for four-six replicate.

Biomass yield of 3,7 g/l algae DM in 6 days. A daily production of 1.1 g/l/d DM in the lab.

At power plant station....

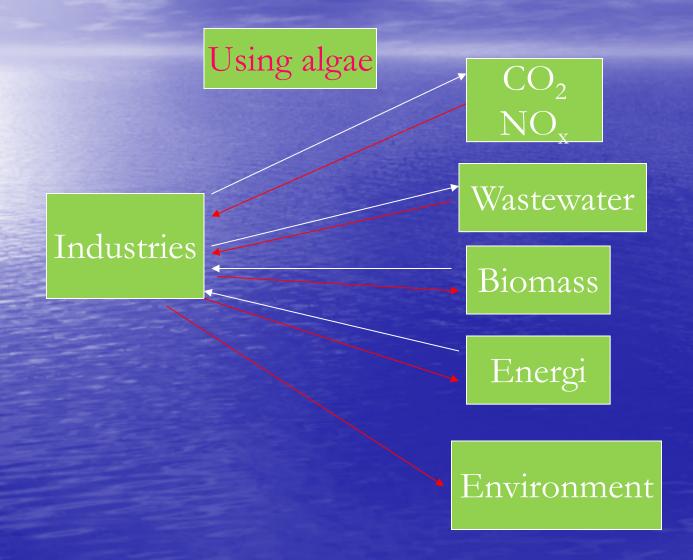

 Algae biomass production from 0.1 to 0.5 g/l dependent on retention time.

Using influent (raw wastewater)
Total inorganic nitrogen (NH₄+NO₃) reduction from 44 to 82% after a retention time of 3.5 days.
Phosphates were reduced on average by 46% and total phosphorus followed a similar trend.

The pilot plant

Lab unit.

Some result from the pilot


Algae biomass concentration from 0.03 to 0.49 g/l.
During July-August 2013 we have had a productivity of 19.1 g/m2/day in totally open pond and 13.3 g/m2/day in a pond under the greenhouse.
Retention time was 3 days.

Using influent (locally produced)
Total NH₄ reduction of 73% after a retention time of 3 days; while total phosphorus was reduced by 75%.

Projects linked to the pilot

- SLU (Umeå), UmU, Åbo (Finland) and Australia, thermochemical analyses of algal biomass
- SLU-UmU-LTU system integration of algae-cyanobacteria Bio4Energy project
- SLU-UmU pharmaceuticals reduction
- SLU-SP Umeå-bäckhammar collaboration
- SLU-Mälardalen University biogas production from algae biomass
- SLU-Holmen the use of algae slurry as a fertilizer Under discussion

Pilot project

